prototype cnc machining service
Get a Quote Now!

CNC Machining New Bedford Massachusetts | CNC Machining Services

cnc shops near me

Instant CNC price quote estimates

DFM by a dedicated engineer on your dashboard

Compare multi quotes under one roof

Parts get shipped directly from CNC shops to customer's door for added transparency and saving time

Cost saving quotes directly from online machining service to help you for cheap cnc machining service

Quality guaranteed parts and payment protection

Fast CNC machining service

Make Your Parts with Full Transparency: Enjoy Quotes That Match Invoices from Our Supplier Network Factories, Included in Your Package. Our Fee Comes from Suppliers, Not Customers

"The best service and quality for the right price! Really professional and always trying to help the customer! Definitely great!", Daniel Climber

"Accurate delivery times and fast service. I have been very satisfied with the parts that I have purchased.", Tony Lazaro

"Excellent service and fast turnaround at a competitive price. Items were delivered to our office in New Zealand within 1 month of placing the order and all parts were within design tolerances", Corben Taylor

"Great platform for CNC Machining. I ordered some parts to be CNC Machined in Alumnium 6082 for a prototype build I am working on. Drawing was finished Tusday 05. January and sent to my regular machining shops nearby. This time I also uploaded a STEP file of the design to partZpro to test their system after finding them on internet. On the 06. January I received a quote for shipping and manufacturing I was surprised over the easy process on their website, and ordered the parts to test it out. A few days later I sent address update to sales to add some information to transport. Unbelievable - On morning Monday 11. January DHL was on my doorstep delivering the parts. Shipping had the updated information.  We are talking about less than 4 working days. Delivered from other side of world, and that is before my nearby shops even has responded with their quote and lead time.Part delivered was perfectly fit, better than specified tolerance, and had a great surface finish. I will definitely look into this service then I need parts next time.", Rune Kvame - On morning Monday 11. January DHL was on my Doorstop delivering the parts. Shipping had the updated Information.  We are talking about less than 4 working days. Delivered from other side of World, and that is before my nearby shops even has responded with their quoute and lead time.Part delivered was perfectly fit, better than specified tolerance, and had a great surface finish.I will definitely look into this service then I need parts next time.", Rune Kvam

"I recently had used partzpro for a prototype to be made from a 3d file into aluminum. And I'm super happy I did. Cost was a fraction of its competitors and turn around was about a month. During holidays. Parts were very accurate and now my prototype is one step closer to being finalized.  Will most Definately use again", Matt Faxon

"Response time is incredibly fast.  I am impressed and adds to their credibility.  Will do business with again ASAP.", Mark Scallan

"Great job on products that I have ordered.", ASG Astrology

"Great service, pricing and speed.", Paul Murtagh

"Parts are always made to your design specifications. Reasonable prices and fast turn around.", Dennis Tang

"A very prompt quotation and efficient processing of our order.CNC machining was executed exactly as requested.Delivery was pretty fast. Even faster than quoted.", Andre Dussault

partZpro: Where Precision Meets Speed in CNC Machining Services

We offer unparalleled online CNC parts and precision in producing metal CNC  services, stainless steel machining service, aluminum CNC service, custom alumninum CNC service, and plastic CNC service on prototyped machined parts with quick turnarounds using our 1000 CNC macinins to cover your machining online needs.

Get your quotes via our instant quote CNC machining services and start benefiting from our order machined parts online platform.

Prototype Parts and CNC Orders: Streamlined Online Solutions

cnc machining services near me
  • Compare CNC quotes : Our online CNC quotes enables you to get online CNC machining service from curated online CNC machine shops in one place without needing to go door to door for best shop CNC online.

  • Quick turn CNC machining: Receive your CNC machined parts with our rapid CNC services quickly as 3 days.

  • Global Reach: We serve clients across the globe with our world-class CNC fabrication services facilities.

  • Expertise: Our skilled precision machining service use over 1000 advanced CNC custom lathe service centers, CNC milling service, and CNC milling online service to deliver the best CNC quotes.
online milling service

Expert CNC Solutions – Only a Click Away up-to 4x Saving

We offer a wide array of CNC machining online for

New Bedford Massachusetts

  • CNC milling quotes
  • CNC milling online
  • CNC milling machining service - Aluminum milling service and Stainless Steel machining service
  • 5 axis CNC machining service
  • CNC routing
  • Online lathe service
  • CNC grinding
  • CNC drilling
  • CNC boring
  • Tapped holes service
  • CNC broaching
  • CNC reaming
  • CNC honing
  • CNC lapping
  • CNC sawing
  • CNC shaping
  • CNC planing
  • CNC engraving
  • CNC knurling
  • CNC threading
  • CNC electrical discharge machining (EDM)
  • CNC laser machining
  • Online CNC machining service
  • Online CNC machining quote
custom cnc machining

Versatile CNC Machining: No Job Too Big or Small

Process: 3-Axis milling

  • Max part size (mm/in): 2000 x 1700 x 1000 / 78.74 x 66.93 x 39.37
  • Min part size (mm/in): 5 x 5 x 5 / 0.2 x 0.2 x 0.2
  • Min feature size (mm/in): Ø 1 / Ø 0.039
  • Standard tolerance (Metals/Plastics mm/in): +/-0.13 / +/-0.005 (Metals), +/-0.20 / +/-0.008 (Plastics)
  • Lead time: 10 days for 20 parts

Process: 5-Axis milling

  • Max part size (mm/in): 650 x 500 x 250 / 25.59 x 19.68 x 9.84
  • Min part size (mm/in): 5 x 5 x 5 / 0.2 x 0.2 x 0.2
  • Min feature size (mm/in): Ø 1 / Ø 0.039
  • Standard tolerance (Metals/Plastics mm/in): +/-0.13 / +/-0.005 (Metals), +/-0.20 / +/-0.008 (Plastics)
  • Lead time: 10 days for 20 parts

Process: Turning

  • Max part size (mm/in): 500 x 500 / 19.69 x 19.69
  • Min part size (mm/in): 5 x 5 x 5 / 0.2 x 0.2 x 0.2
  • Min feature size (mm/in): Ø 1 / Ø 0.039
  • Standard tolerance (Metals/Plastics mm/in): +/-0.13 / +/-0.005 (Metals), +/-0.20 / +/-0.008 (Plastics)
  • Lead time: 10 days for 20 parts

Ready When You Are: On-Demand Surface Finishing for

  • Type 1 Anodizing
  • Type 2 Anodizing
  • Type 3 Anodizing
  • Hard Anodizing
  • Color Anodizing Aluminum (Anodizing aluminum in colors based on Pantone codes)
  • Bead blasting
  • Grinding
  • Heat treating
  • Polishing
  • Black oxide coating
  • Powder coating
  • Electroplating
  • Passivation
  • Chemical film coating
  • Painting
  • Laser engraving
  • Hard coating
  • Chromate conversion coating
  • Brushing
  • Burnishing
  • Deburring
  • Electroless nickel plating
  • Hot blackening
  • Selective plating

Industries Served:

  • Aerospace industry: Used for manufacturing high-precision components for airplanes, satellites, and space vehicles.
  • Automotive industry: Produces complex parts such as engine components and gearboxes for standard and high-performance vehicles.
  • Healthcare and medical industry: Crucial for creating precise components used in medical devices, implants, orthopedic devices, and surgical tools.
  • Electronics industry: Used to produce parts for consumer electronics, including components for computers, smartphones, and household appliances.
  • Energy sector: Includes renewable and non-renewable sectors, where CNC machining is used for parts in wind turbines, solar panels, and oil and gas exploration equipment.
  • Industrial machinery and Equipment: Widely used in the production of complex machinery and equipment for industries like construction and agriculture.
  • Consumer products and goods: Utilized in the production of consumer goods such as sporting equipment, musical instruments, and custom furniture.
  • Research and development: Employed for prototyping and developing new products in various fields, including scientific research.
  • Transportation industry: Used in the manufacture of components for trains, ships, and other large vehicles.

Exceptional CNC Prototypes at Right Prices

Our CNC fabrication service includes but not limited to:

CNC mill services:

  • Description: Utilizes rotary cutting tools to remove material.
  • Capabilities: Can perform a variety of operations like drilling, boring, and cutting.
  • Variations: Ranging from 3-axis (X, Y, Z) to multi-axis (5-axis and more) for complex geometries.

CNC lathes services:

  • Description: Rotates the workpiece against a cutting tool.
  • Capabilities: Ideal for producing symmetrical parts like cones and cylinders.
  • Variations: Can include live tooling for additional operations like milling and drilling.

CNC Plasma cutters services:

  • Description: Uses a plasma torch to cut through metal.
  • Capabilities: Effective for cutting large sheets of metal with high speed and precision.
  • Materials: Mainly used for metals like steel, brass, and aluminum.

CNC laser cutters services:

  • Description: Employs a high-powered laser for cutting and engraving.
  • Capabilities: Precise cuts and engravings on various materials.
  • Materials: Suitable for metals, plastics, wood, and composites.

CNC electric discharge machines (EDM):

  • Description: Uses electrical discharges or sparks to shape the workpiece.
  • Capabilities: Excellent for hard materials and intricate designs.
  • Types: Wire EDM (uses a thin wire) and Die Sink EDM (uses a pre-shaped electrode).

CNC router services:

  • Description: Similar to mills but primarily for softer materials.
  • Capabilities: Cutting, carving, and engraving on wood, plastics, and some soft metals.
  • Applications: Used in woodworking, sign making, and plastic fabricating.

CNC grinders services:

  • Description: Uses a rotating abrasive wheel for fine machining.
  • Capabilities: Ideal for achieving fine finishes and precise dimensions.
  • Types: Surface grinders, cylindrical grinders, and others for specific applications.

CNC drilling services:

  • Description: Specifically designed for drilling operations.
  • Capabilities: Can perform precise drilling in various patterns and depths.
  • Applications: Common in the production of repetitive parts requiring multiple holes.
Start Your Online Quoting Proces Here!

Get CNC Parts Crafted with Precision Using Our CNC Machining Services. Choose from Over 50 Metals and Plastics, Including:

  • Aluminum 6061-T6: Often referred to as the "aviation aluminum alloy" due to its use in aircraft structures. It offers a blend of high strength, superior workability, and impressive corrosion resistance. Accepts applied coatings very well and has excellent joining characteristics. It is one our most used for aluminum CNC machining service.
  • Aluminum 6060: A versatile alloy mainly used for complex cross-sections. It exhibits good surface finish, corrosion resistance, and weldability.
  • Aluminum 6063: Popular in architectural applications because of its smooth surface finish and good extrudability. Offers moderate strength and corrosion resistance.
  • Aluminum 6082: Primarily used in Europe, it's structurally comparable to 6061. It offers good formability and weldability, and is often used in high-stress applications.
  • Aluminum 5052: Known for its workability and resistance to saltwater corrosion. Often used in marine and aircraft fuel tanks.
  • Aluminum 7075-T6: One of the strongest aluminum alloys. Used in aircraft structures due to its high strength and light weight. Less corrosion-resistant than some other aluminums but can resist stress and crack propagation.
  • Aluminum 5083: Known for its exceptional performance in extreme environments. It is resistant to attack by seawater and industrial chemicals and is used in marine applications.
  • Aluminum 2024: Primarily used in aerospace due to its high strength and fatigue resistance. However, it's more prone to corrosion compared to other aluminums.
  • 304 stainless steel CNC machining services: Widely used stainless steel due to its corrosion resistance and ability to be formed and welded easily.
  • 303 stainless steel service: A variant of 304, designed for easier machining. Slightly less corrosion-resistant.
  • 316 stainless steel service: Offers higher corrosion resistance than 304, especially against chlorides. Often used in marine environments.
  • 316L stainless steel service: Similar to 316 but with lower carbon content to resist corrosion after welding.
  • Low carbon steel 1018: Offers good weldability and machinability. Often used for bolts, rods, and other products.
  • Mild steel 1020: Contains relatively low carbon content which makes it easy to shape and weld.
  • Mild steel 1045: Higher carbon content than 1020, offering increased strength and hardness.
  • Mild steel A36: Common structural steel in the U.S. with good weldability and formability.
  • Alloy steel 4140: Known for its strength, toughness, and good machinability. Used in various demanding applications.
  • Alloy steel 1065: High carbon steel known for its hardness. Often used for springs and high-strength wires.
  • Alloy steel 4340: Known for its toughness and high strength. Used in aerospace and other critical applications.Titanium Grade 5 (Ti6Al4V): The most widely used titanium alloy. Offers a blend of strength, light weight, and corrosion resistance.
  • Titanium grade 2: Commercially pure titanium. Offers a good balance of strength, ductility, and corrosion resistance.
  • Copper C110: Known for its electrical conductivity. Often used in electrical applications and for artistic works.
  • Brass 360C: A popular brass variant known for its machinability. Commonly used for decorative items and hardware.
  • PTFE (Teflon): Known for its non-stick properties. Resistant to heat and chemicals.
  • Derlin (POM): Offers high stiffness, low friction, and excellent dimensional stability. Used in precision parts.
  • PEEK: Known for its high temperature resistance and mechanical properties. Used in aerospace, automotive, and medical applications.
  • HDPE: A versatile plastic with good impact resistance. Commonly used in containers and piping.
  • HDPE: A versatile plastic with good impact resistance. Commonly used in containers and piping.
  • PVC: Widely used plastic known for its durability and chemical resistance. Common in plumbing and electrical insulation.
  • ABS: Popular in the 3D printing community and also can be CNC machined. Known for its strength, toughness, and heat resistance.
  • Polypropylene (PP): Has good chemical resistance and is commonly used in packaging.
  • Polycarbonate (PC): Known for its optical clarity and impact resistance. Common in eyewear and safety equipment.
  • Nylon 6: Offers a balance of strength and flexibility. Used in a variety of applications from automotive to consumer goods.
  • UHMW: Known for its high wear resistance and low coefficient of friction. Often used in industrial machinery.

Fast, Custom CNC Machining Services: Explore Our Online Capabilities

  • Online CNC machining quote in a few hours
  • Online CNC service as fast as 3 days
  • Online machine shop service with tolerances to 0.01 mm

Custom CNC Machining Service for Both Low and High Volume Production

For prototype machined parts, one off CNC machining, and production runs with fast CNC machining services, partZpro is your go-to CNC machining supplier for quality and speed. Get your CNC rapid prototyping projects off the ground— get an instant CNC machining quote now.

Frequently Asked Questions: Designing for CNC Machining

What is CNC machining?
CNC Machining is a manufacturing process where pre-programmed computer software dictates the movement of factory tools and machinery. It's used for a wide range of complex processes, such as drilling, grinding, milling, and turning.

Why is CNC machining important in manufacturing?
CNC machining is crucial for its precision, repeatability, and efficiency in producing parts. It's ideal for creating complex, three-dimensional shapes that would be almost impossible to achieve with manual machining.

What materials can be used in CNC machining?
Common materials include:Metals: Aluminum, stainless steel, brass, copper
Plastics: Nylon, polycarbonate, PTFEComposites: Carbon fiber, fiberglass

How to design parts for CNC machining?
When designing for CNC machining, consider:Simplicity: Keep designs as simple as possible.Tolerances: Understand the machining tolerances and design accordingly.Tool Access: Ensure tools can easily access all parts of the design.Material Selection: Choose materials based on the part's function and machining capabilities.

What are standard tolerances in CNC machining?
Standard tolerances vary but typically range from ±0.005" (±0.127mm) to ±0.001" (±0.025mm) depending on the material and size of the part.

Can complex shapes be machined?
Yes, CNC machining can produce complex shapes. However, the more complex the design, the more time and resources are required, potentially increasing costs.

What is the importance of surface finishing in CNC machining?
Surface finishing can improve the appearance, surface smoothness, corrosion resistance, and other properties of the machined part.

How does CNC machining compare to 3D printing?
CNC machining is a subtractive process, removing material to create parts, while 3D printing is additive, building parts layer by layer. CNC machining is generally faster for producing metal parts and is superior in terms of strength and finish.

Can I use CAD software for CNC machining design?
Yes, CAD (Computer-Aided Design) software is essential for designing parts for CNC machining. It helps in creating precise 3D models, which can then be translated into instructions for the CNC machine.

What is the role of AI in CNC machining?
AI and machine learning can optimize machining processes, predict maintenance needs, and improve quality control, leading to increased efficiency and reduced costs.How Do I Choose a CNC Machining Service?When choosing a CNC machining service, consider their expertise, machinery capabilities, quality control processes, turnaround time, and cost.Can Small Quantities Be Produced Economically?Yes, CNC machining is suitable for small quantity production, especially for complex parts where mold or tooling costs for other manufacturing methods would be prohibitive.

What is the STEP file format in CNC machining?
STEP (Standard for the Exchange of Product model data) is an ISO standard exchange format used for representing 3D objects. It encodes detailed 3D data and is widely supported across different CAD software. STEP files are advantageous in CNC machining for several reasons:
Compatibility: STEP files are universally compatible with almost all CAD/CAM software.
Detail: They retain all the geometric and dimensional data of a part, essential for precision machining.
Flexibility: They can be easily edited, making them ideal for iterative design processes.

STEP vs STL format: What's the difference?
While both STEP and STL are file formats used in 3D modeling, they have distinct characteristics:
STEP Files:Type: Represents 3D objects using NURBS and B-Spline geometry.Usage: Ideal for precise manufacturing processes like CNC machining.
Advantages: Retains more detailed, editable data about the geometry.
Application: Used in industries where precise measurements and editable file features are critical, like aerospace and automotive.
STL Files:Type: Represents 3D objects using a series of triangular facets.
Usage: Commonly used in 3D printing.
Advantages: Simple format, easy to generate but less detailed.Application: Typically used for rapid prototyping and 3D printing where high precision is not as critical.

Benefits of CNC Machining Prototyping

In the ever-evolving landscape of manufacturing, the precision and efficiency of CNC (Computer Numerical Control) machining have revolutionized the prototyping process. Whether you're developing a new product, refining an existing design, or customizing components, CNC machining offers a plethora of benefits that can significantly enhance the prototyping phase. This article explores the advantages of CNC machining prototyping, illustrating why it has become a cornerstone in modern manufacturing and design.

1. Unmatched Precision and Accuracy

One of the primary benefits of CNC machining is its unparalleled precision and accuracy. Traditional machining techniques often rely on manual operations, which can introduce human error. In contrast, CNC machines are controlled by computer programs that execute designs with extreme accuracy. This ensures that the dimensions and specifications of the prototype are met with remarkable consistency, which is crucial for both functionality and aesthetics.

CNC machines can achieve tolerances as tight as ±0.001 inches, making them ideal for producing complex geometries and intricate details that would be challenging or impossible with manual methods. This level of precision ensures that prototypes are a true representation of the final product, allowing for more effective testing and evaluation.

2. Enhanced Efficiency and Speed

In the fast-paced world of product development, time is often a critical factor. CNC machining significantly reduces the time required to produce prototypes compared to traditional methods. The automation of CNC machines allows for continuous operation without the need for constant supervision, leading to faster turnaround times.

Furthermore, CNC machining can handle multiple operations simultaneously, such as cutting, drilling, and milling, in a single setup. This multi-functionality not only speeds up the production process but also reduces the need for multiple machines and setups, streamlining the workflow and minimizing delays.

3. Consistency and Repeatability

Consistency is key when producing multiple prototypes for testing and evaluation. CNC machining excels in this regard, as it can produce identical parts repeatedly with high precision. Once the CAD (Computer-Aided Design) model and CAM (Computer-Aided Manufacturing) program are set up, the CNC machine can reproduce the prototype as many times as needed without any variation.

This repeatability is particularly beneficial for testing purposes, where multiple identical prototypes are required to ensure consistent results. It also facilitates easy modifications and iterations, as the CNC program can be adjusted to produce a new version of the prototype quickly and accurately.

4. Versatility in Material Selection

CNC machining is compatible with a wide range of materials, including metals (such as aluminum, steel, and titanium), plastics (like ABS, polycarbonate, and nylon), and even composites. This versatility allows designers and engineers to select the most suitable material for their prototype based on its intended application, mechanical properties, and aesthetic requirements.

The ability to work with various materials also enables the production of prototypes that closely mimic the properties of the final product. This is crucial for functional testing, as it ensures that the prototype behaves similarly to the production part in real-world conditions.

5. Cost-Effectiveness

While the initial investment in CNC machinery can be significant, the long-term cost benefits are substantial. The automation and efficiency of CNC machining lead to reduced labor costs, as fewer operators are needed to supervise and manage the production process. Additionally, the precision and accuracy of CNC machining minimize material waste, further lowering production costs.

For low to medium production volumes, CNC machining is often more cost-effective than other prototyping methods such as 3D printing or injection molding. The ability to quickly produce high-quality prototypes reduces the need for expensive tooling and molds, making CNC machining an economical choice for many projects.

6. Improved Design Flexibility

CNC machining offers exceptional design flexibility, allowing for the creation of complex shapes and features that would be difficult or impossible to achieve with traditional methods. The advanced capabilities of CNC machines, such as multi-axis machining, enable the production of intricate geometries, undercuts, and internal features with ease.

This flexibility is particularly advantageous during the prototyping phase, as it allows designers to experiment with innovative concepts and refine their designs without being constrained by manufacturing limitations. The ability to quickly iterate and test different design variations accelerates the development process and leads to better end products.

7. Reduced Risk of Human Error

Human error is an inherent risk in manual machining processes, leading to inconsistencies, defects, and potential rework. CNC machining minimizes this risk by automating the production process and relying on precise computer-controlled movements. The reliance on digital instructions ensures that each prototype is manufactured exactly as designed, reducing the likelihood of errors and defects.

Moreover, the use of simulation software in CNC machining allows for virtual testing and verification of the manufacturing process before actual production begins. This proactive approach identifies potential issues early on, further reducing the risk of costly mistakes and rework.

8. Scalability for Production

While CNC machining is highly effective for prototyping, it also offers scalability for low to medium-volume production runs. Once the prototype has been validated and finalized, the same CNC setup can be used to produce small batches of the final product with the same level of precision and consistency. This seamless transition from prototyping to production simplifies the manufacturing process and reduces lead times.

For larger production volumes, CNC machining can still play a crucial role in producing specialized components or molds for injection molding, ensuring that the quality and accuracy of the parts are maintained throughout the manufacturing process.

9. Enhanced Surface Finish and Aesthetics

The surface finish and aesthetics of a prototype are important factors, especially for consumer products where appearance plays a significant role in market acceptance. CNC machining produces high-quality surface finishes that require minimal post-processing, resulting in visually appealing prototypes.

Advanced CNC machines are capable of achieving smooth and polished surfaces, intricate textures, and fine details, enhancing the overall look and feel of the prototype. This is particularly beneficial for presentation models, marketing samples, and functional prototypes where aesthetics are critical.

10. Integration with Digital Design and Manufacturing Tools

The integration of CNC machining with digital design and manufacturing tools streamlines the entire prototyping process. CAD software allows designers to create detailed 3D models, which can be directly imported into CAM software for generating CNC programs. This seamless workflow eliminates the need for manual data transfer and reduces the risk of errors.

Additionally, the use of simulation and verification tools in the CAM software ensures that the CNC programs are optimized for efficiency and accuracy before actual production begins. This digital integration enhances the overall efficiency and reliability of the prototyping process, enabling faster iterations and reducing development time.

11. Customization and Personalization

In an era where customization and personalization are increasingly valued, CNC machining offers the ability to produce unique and tailored prototypes. Whether it's creating custom parts for a specific application or personalizing a product with unique features, CNC machining can accommodate these requirements with ease.

The flexibility of CNC machining allows for easy modifications to the digital design, enabling the production of customized prototypes without the need for extensive retooling or setup changes. This capability is particularly advantageous for industries such as medical devices, aerospace, and consumer electronics, where customized solutions are often required.

Conclusion

CNC machining has revolutionized the prototyping process, offering a multitude of benefits that enhance precision, efficiency, and flexibility. Its ability to produce high-quality prototypes with unmatched accuracy, consistency, and speed makes it an invaluable tool for designers, engineers, and manufacturers. By leveraging the advantages of CNC machining, companies can accelerate their product development cycles, reduce costs, and bring innovative products to market faster.

As technology continues to advance, CNC machining will undoubtedly play an even more significant role in the future of manufacturing, driving further improvements in the quality and efficiency of prototyping and production processes. Whether you're developing a new product, refining an existing design, or exploring innovative concepts, CNC machining provides the capabilities needed to turn ideas into reality with precision and confidence.

cnc machinining service
Start Your Online Quoting Proces Here!

Trusted Online CNC Service Around the Globe

online 3d printing services
©2016-2024 Creative Objex LLC